论文标题
J-REC:原则性和可扩展的建议理由
J-Recs: Principled and Scalable Recommendation Justification
论文作者
论文摘要
在线推荐是各种服务的重要功能,包括电子商务和视频流,向用户建议购买,观看或阅读的项目。证明建议的合理性,即解释用户为什么会喜欢推荐的项目的原因,已被证明是为了提高用户的满意度和推荐的说服力。在本文中,我们开发了一种生成事后理由的方法,可以应用于任何建议算法的输出。现有的事后方法通常在提供多种理由方面受到限制,因为它们仅使用许多可用的输入数据中的一种,或者依靠预定义的模板。我们通过开发J-REC来解决早期方法的这些局限性,这是一种产生简洁和多种理由的方法。 J-REC是一种建议模型方法,它基于各种类型的产品和用户数据(例如购买历史记录和产品属性)生成多种理由。共同处理多种数据的挑战是通过设计基于图形的原则性方法来解决的。除了理论分析外,我们还对合成和现实世界数据进行了广泛的评估。我们的结果表明,J-REC符合理由的理想特性,并有效地产生有效的理由,将用户偏好匹配比基线更准确20%。
Online recommendation is an essential functionality across a variety of services, including e-commerce and video streaming, where items to buy, watch, or read are suggested to users. Justifying recommendations, i.e., explaining why a user might like the recommended item, has been shown to improve user satisfaction and persuasiveness of the recommendation. In this paper, we develop a method for generating post-hoc justifications that can be applied to the output of any recommendation algorithm. Existing post-hoc methods are often limited in providing diverse justifications, as they either use only one of many available types of input data, or rely on the predefined templates. We address these limitations of earlier approaches by developing J-Recs, a method for producing concise and diverse justifications. J-Recs is a recommendation model-agnostic method that generates diverse justifications based on various types of product and user data (e.g., purchase history and product attributes). The challenge of jointly processing multiple types of data is addressed by designing a principled graph-based approach for justification generation. In addition to theoretical analysis, we present an extensive evaluation on synthetic and real-world data. Our results show that J-Recs satisfies desirable properties of justifications, and efficiently produces effective justifications, matching user preferences up to 20% more accurately than baselines.