论文标题
deepi2i:通过从gan中转移来实现深层的图像到图像翻译
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs
论文作者
论文摘要
图像到图像翻译最近取得了显着的结果。但是,尽管目前的成功,但当类之间的翻译需要较大的变化时,它的表现却较低。我们将其归因于当前最新图像到图像方法使用的高分辨率瓶颈。因此,在这项工作中,我们提出了一种新型的深层分层图像到图像翻译方法,称为deepi2i。我们通过利用层次特征来学习一个模型:(a)浅层层中包含的结构信息以及(b)从深层中提取的语义信息。为了启用小型数据集中深I2I模型的培训,我们提出了一种新型的转移学习方法,该方法从预先训练的gan中转移了知识。具体而言,我们利用预先训练的gan(即biggan或stylegan)的歧视器来初始化编码器和鉴别器和预训练的生成器来初始化模型的生成器。应用知识转移会导致编码器和发电机之间的对齐问题。我们介绍了一个适配器网络来解决此问题。在三个数据集(动物面,鸟类和食物)上的多类图像到图像翻译上,与最先进的艺术相比,我们将MFID降低至少35%。此外,我们对定性和定量证明,转移学习显着改善了I2I系统的性能,尤其是对于小型数据集。最后,我们是第一个对100多个类的域进行I2I翻译的人。
Image-to-image translation has recently achieved remarkable results. But despite current success, it suffers from inferior performance when translations between classes require large shape changes. We attribute this to the high-resolution bottlenecks which are used by current state-of-the-art image-to-image methods. Therefore, in this work, we propose a novel deep hierarchical Image-to-Image Translation method, called DeepI2I. We learn a model by leveraging hierarchical features: (a) structural information contained in the shallow layers and (b) semantic information extracted from the deep layers. To enable the training of deep I2I models on small datasets, we propose a novel transfer learning method, that transfers knowledge from pre-trained GANs. Specifically, we leverage the discriminator of a pre-trained GANs (i.e. BigGAN or StyleGAN) to initialize both the encoder and the discriminator and the pre-trained generator to initialize the generator of our model. Applying knowledge transfer leads to an alignment problem between the encoder and generator. We introduce an adaptor network to address this. On many-class image-to-image translation on three datasets (Animal faces, Birds, and Foods) we decrease mFID by at least 35% when compared to the state-of-the-art. Furthermore, we qualitatively and quantitatively demonstrate that transfer learning significantly improves the performance of I2I systems, especially for small datasets. Finally, we are the first to perform I2I translations for domains with over 100 classes.