论文标题

除了优化 - 相对论激光 - 血浆实验中的监督学习应用

Beyond optimization -- supervised learning applications in relativistic laser-plasma experiments

论文作者

Lin, Jinpu, Qian, Qian, Murphy, Jon, Hsu, Abigail, Ma, Yong, Hero, Alfred, Thomas, Alexander G. R., Krushelnick, Karl

论文摘要

我们探索了机器学习技术在相对论激光 - 播出实验中的应用,超出了优化目的。我们预测鉴于由可变形镜引起的激光波前变化,在激光韦克赛场加速器中产生的电子的束电荷。机器学习启用功能分析不仅仅是寻找最佳光束电荷,还表明激光波前的特定像差在产生较高的光束电荷时受到青睐。监督的学习模型允许表征所测量的数据质量以及识别不可重复的数据和潜在异常值。我们还将虚拟测量误差包括在实验数据中,以检查这些条件下的模型鲁棒性。这项工作说明了机器学习方法如何在相对论激光 - 血浆相互作用的高度非线性问题中受益于数据分析和物理解释。

We explore the applications of machine learning techniques in relativistic laser-plasma experiments beyond optimization purposes. We predict the beam charge of electrons produced in a laser wakefield accelerator given the laser wavefront change caused by a deformable mirror. Machine learning enables feature analysis beyond merely searching for an optimal beam charge, showing that specific aberrations in the laser wavefront are favored in generating higher beam charges. Supervised learning models allow characterizing the measured data quality as well as recognizing irreproducible data and potential outliers. We also include virtual measurement errors in the experimental data to examine the model robustness under these conditions. This work demonstrates how machine learning methods can benefit data analysis and physics interpretation in a highly nonlinear problem of relativistic laser-plasma interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源