论文标题

依赖模型的假体控制与相互作用的估计

Model-Dependent Prosthesis Control with Interaction Force Estimation

论文作者

Gehlhar, Rachel, Ames, Aaron D.

论文摘要

当前的假体控制方法主要独立于模型 - 缺乏正式的稳定性保证,主要依靠启发式调谐参数来良好的性能,并忽略了对系统自然动态的使用。由于人类动态未知,因此很难实现假体控制器的模型依赖性。我们基于以前的工作,该工作综合了稳定的假体,逐步使用了快速指数稳定的控制控制Lyapunov功能(RES-CLFS)。本文利用RES-CLF和力估计来构建基于模型的基于模型的优化控制器。这些通过板载感应和计算在硬件上实现实验性实现。该硬件演示具有正式的稳定性保证,利用系统的自然动力学,并实现了与其他假体轨迹跟踪控制方法的卓越跟踪。

Current prosthesis control methods are primarily model-independent - lacking formal guarantees of stability, relying largely on heuristic tuning parameters for good performance, and neglecting use of the natural dynamics of the system. Model-dependence for prosthesis controllers is difficult to achieve due to the unknown human dynamics. We build upon previous work which synthesized provably stable prosthesis walking through the use of rapidly exponentially stabilizing control Lyapunov functions (RES-CLFs). This paper utilizes RES-CLFs together with force estimation to construct model-based optimization-based controllers for the prosthesis. These are experimentally realized on hardware with onboard sensing and computation. This hardware demonstration has formal guarantees of stability, utilizes the natural dynamics of the system, and achieves superior tracking to other prosthesis trajectory tracking control methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源