论文标题

通过生成对抗网络学习机器人配置的限制分布

Learning Constrained Distributions of Robot Configurations with Generative Adversarial Network

论文作者

Lembono, Teguh Santoso, Pignat, Emmanuel, Jankowski, Julius, Calinon, Sylvain

论文摘要

在高维机器人系统中,有效配置空间的流形通常具有复杂的形状,尤其是在诸如最终效应方向或静态稳定性之类的约束下。我们提出了一种生成的对抗网络方法,以了解在此类约束下的有效机器人配置的分布。它可以生成接近约束歧管的配置。我们提出了此方法的两个应用。首先,通过学习有关所需的最终效果位置的条件分布,即使对于非常高的自由度(DOF)系统,我们也可以进行快速的逆运动学。然后,我们使用它来在基于采样的约束运动计划算法中生成样品,以减少必要的投影步骤,从而加快计算。我们使用7多道熊猫操纵器和28多型人形机器人Talos验证了模拟方法。

In high dimensional robotic system, the manifold of the valid configuration space often has a complex shape, especially under constraints such as end-effector orientation or static stability. We propose a generative adversarial network approach to learn the distribution of valid robot configurations under such constraints. It can generate configurations that are close to the constraint manifold. We present two applications of this method. First, by learning the conditional distribution with respect to the desired end-effector position, we can do fast inverse kinematics even for very high degrees of freedom (DoF) systems. Then, we use it to generate samples in sampling-based constrained motion planning algorithms to reduce the necessary projection steps, speeding up the computation. We validate the approach in simulation using the 7-DoF Panda manipulator and the 28-DoF humanoid robot Talos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源