论文标题

在球形谐波扩展的融合领域

On the domain of convergence of spherical harmonic expansions

论文作者

Costin, O., Costin, R. D., Ogle, C., Bevis, M.

论文摘要

球形谐波扩展(SHES)在大多数物理科学中起着重要作用,尤其是在物理地球上。尽管进行了数十年的调查,但SHE系数的大阶行为以及这些扩展的确切融合领域仍然是开放的问题。这些问题在本文的通用行星论文中解决,其形状(地形)可能包括许多局部峰,但只有一个全球最高峰。我们表明,无论密度和地形的平稳性如何,没有完全的分析性,重力势的球形谐波扩展都在布里属球体外部的封闭中完全融合在一起(在其内部中包含星球的质量中最小的球体中心(其内部中包含行星质量的最小球体中心),并在其内部的下方易位,并与Brillouin Sphere Compersecre一起使用。更确切地说,这种过度连接发生在参数空间中的零度量集中。一个相关的结果是,在自然的Banach空间中,她在Brillouin球体下方的电势的收敛是出于无限编成的子空间中的潜在功能(而任何积极的编成率已经意味着概率零)。在傅立叶空间中提供了一定的限制,我们发现SHE系数的领先顺序渐近行为。 我们通过在布里渊球体以下找到必要且充分的收敛条件来进一步发展,这需要在最高峰下的一种分析性形式,这对于逼真的天体不满意。也就是说,在与行星边界接触时,布里群球体上的谐波度量的纵向平均水平必须进行现实分析。事实证明,在这种情况下,只有一个小峰会涉及。

Spherical harmonic expansions (SHEs) play an important role in most of the physical sciences, especially in physical geodesy. Despite many decades of investigation, the large order behavior of the SHE coefficients, and the precise domain of convergence for these expansions, have remained open questions. These questions are settled in the present paper for generic planets, whose shape (topography) may include many local peaks, but just one globally highest peak. We show that regardless of the smoothness of the density and topography, short of outright analyticity, the spherical harmonic expansion of the gravitational potential converges exactly in the closure of the exterior of the Brillouin sphere (The smallest sphere around the center of mass of the planet containing the planet in its interior), and convergence below the Brillouin sphere occurs with probability zero. More precisely, such over-convergence occurs on zero measure sets in the space of parameters. A related result is that, in a natural Banach space, SHE convergence of the potential below the Brillouin sphere occurs for potential functions in a subspace of infinite codimension (while any positive codimension already implies occurrence of probability zero). Provided a certain limit in Fourier space exists, we find the leading order asymptotic behavior of the coefficients of SHEs. We go further by finding a necessary and sufficient condition for convergence below the Brillouin sphere, which requires a form of analyticity at the highest peak, which would not hold for a realistic celestial body. Namely, a longitudinal average of the harmonic measure on the Brillouin sphere would have to be real-analytic at the point of contact with the boundary of the planet. It turns out that only a small neighborhood of the peak is involved in this condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源