论文标题

优化移动边缘情报系统中的AI服务放置和资源分配

Optimizing AI Service Placement and Resource Allocation in Mobile Edge Intelligence Systems

论文作者

Lin, Zehong, Bi, Suzhi, Zhang, Ying-Jun Angela

论文摘要

利用移动边缘计算(MEC)的最新进展,Edge Intelligence已成为一个有前途的范式,以支持网络边缘的移动人工智能(AI)应用程序。在本文中,我们考虑了多用户MEC系统中的AI服务位置问题,其中访问点(AP)将用户设备上最新的AI程序放置在用户端的本地计算/任务执行中。为了充分利用严格的无线频谱和边缘计算资源,AP仅在用户启用本地计算时将AI服务程序发送给用户,从而获得更好的系统性能。我们通过共同优化服务放置(即,在本地CPU频率上,上行链路链路带宽和Edge CPU频率)来制定混合企业非线性编程(MINLP)问题,以最大程度地减少所有用户的总计算时间和所有用户的能耗。为了解决MINLP问题,我们得出分析表达式以计算低复杂性的最佳资源分配决策。这使我们能够通过基于搜索的算法(例如元式或贪婪的搜索算法)有效地获得最佳服务放置解决方案。为了增强大型网络中的算法可伸缩性,我们进一步提出了一种基于ADMM(交替的乘数方向方法)方法,将优化问题分解为并行处理的MINLP子问题。 ADMM方法消除了在高维空间中进行服务放置决策的需求,因此具有低计算复杂性,与用户数量线性增长。仿真结果表明,所提出的算法的性能非常接近最佳,并且显着胜过其他代表性基准算法。

Leveraging recent advances on mobile edge computing (MEC), edge intelligence has emerged as a promising paradigm to support mobile artificial intelligence (AI) applications at the network edge. In this paper, we consider the AI service placement problem in a multi-user MEC system, where the access point (AP) places the most up-to-date AI program at user devices to enable local computing/task execution at the user side. To fully utilize the stringent wireless spectrum and edge computing resources, the AP sends the AI service program to a user only when enabling local computing at the user yields a better system performance. We formulate a mixed-integer non-linear programming (MINLP) problem to minimize the total computation time and energy consumption of all users by jointly optimizing the service placement (i.e., which users to receive the program) and resource allocation (on local CPU frequencies, uplink bandwidth, and edge CPU frequency). To tackle the MINLP problem, we derive analytical expressions to calculate the optimal resource allocation decisions with low complexity. This allows us to efficiently obtain the optimal service placement solution by search-based algorithms such as meta-heuristic or greedy search algorithms. To enhance the algorithm scalability in large-sized networks, we further propose an ADMM (alternating direction method of multipliers) based method to decompose the optimization problem into parallel tractable MINLP subproblems. The ADMM method eliminates the need of searching in a high-dimensional space for service placement decisions and thus has a low computational complexity that grows linearly with the number of users. Simulation results show that the proposed algorithms perform extremely close to the optimum and significantly outperform the other representative benchmark algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源