论文标题
混合Berezinskii-Kosterlitz-使用张量网络在广义的二维XY模型中且呈现拓扑相变
Hybrid Berezinskii-Kosterlitz-Thouless and Ising topological phase transition in the generalized two-dimensional XY model using tensor networks
论文作者
论文摘要
在张量表网络表示中,具有拓扑整数和半级数涡流激发的广义二维XY自旋模型的分区函数映射到一维量子传递算子的张量产物,其特征方程式可以通过各种统一矩阵生产算法的算法来实现。使用纠缠熵的奇异性,我们准确地确定了该模型的完整相图。整数涡流 - 抗差结合和半企业涡流 - 抗差结合阶段均与通常的berezinskii-kosterlitz-无序(BKT)过渡与无序相分开,而在两个不同的拓扑相之间存在持续的拓扑相位,展示了互动的旋转阶段,而持续的拓扑相位却存在着参与者的互动范围,并且对数的互动和对数的构成范围的进度和对数的依从物均存在。自旋相关长度。因此,建立了一种新的混合BKT和Ising普遍性类别。我们进一步证明了三个相变线在多临界点相交,从中,解次跨界线延伸到无序相。
In tensor network representation, the partition function of a generalized two-dimensional XY spin model with topological integer and half-integer vortex excitations is mapped to a tensor product of one-dimensional quantum transfer operator, whose eigen-equation can be solved by an algorithm of variational uniform matrix product states. Using the singularities of the entanglement entropy, we accurately determine the complete phase diagram of this model. Both the integer vortex-antivortex binding and half-integer vortex-antivortex binding phases are separated from the disordered phase by the usual Berezinskii-Kosterlitz-Thouless (BKT) transitions, while a continuous topological phase transition exists between two different vortex binding phases, exhibiting a logarithmic divergence of the specific heat and exponential divergence of the spin correlation length. A new hybrid BKT and Ising universality class of topological phase transition is thus established. We further prove that three phase transition lines meets at a multi-critical point, from which a deconfinement crossover line extends into the disordered phase.