论文标题

对于小相关性,三个候选多数是最稳定的

Three Candidate Plurality is Stablest for Small Correlations

论文作者

Heilman, Steven, Tarter, Alex

论文摘要

使用变量的计算,我们证明了以下噪声稳定分区的结构定理:$ n $维的欧几里得空间的分区中的分区中,$ m $ diss of $ m $ dissect of固定的高斯量,最大化其噪声稳定性必须为$(M-1)$ - 尺寸 - 如果$ m-dimensiation,如果$ m-1 \ m-1 \ m-1 \ leq N $。特别是,对于满足$ n \ geq m-1 $的所有$ n $,固定高斯量的$ \ mathbb {r}^{n} $的$ m $设置的分区的最大噪声稳定性都是恒定的。从这个结果,我们获得: (i)多数的证明是$ 3 $候选选举的最稳定的猜想,对于所有相关参数,$ρ$满足$ 0 <ρ<ρ_{0} $,其中$ρ_{0}> 0 $是固定的常数(不取决于$ n $ n $ n $ n $ n $ n时,每个候选人都有一个平等的机会。 (ii)Borell不平等的变异证明(对应于$ M = 2 $的情况)。 定理的结构回答了De-Mossel-neeman和Ghazi-Kamath-Raghavendra的问题。项目(i)是任何复数情况的第一个证明是固定$ρ$的khot-kindler-mossel-o'donnell(2005)的最稳定的猜想,而最近解决了案例$ρ\ to1^{ - } $。项目(i)也是假设独特的游戏猜想,这也是Frieze-Jerrum半决赛计划的最佳证据。如果没有假设每个候选人在(i)中都有相等的胜利机会,则已知多数是最稳定的猜想是错误的。

Using the calculus of variations, we prove the following structure theorem for noise stable partitions: a partition of $n$-dimensional Euclidean space into $m$ disjoint sets of fixed Gaussian volumes that maximize their noise stability must be $(m-1)$-dimensional, if $m-1\leq n$. In particular, the maximum noise stability of a partition of $m$ sets in $\mathbb{R}^{n}$ of fixed Gaussian volumes is constant for all $n$ satisfying $n\geq m-1$. From this result, we obtain: (i) A proof of the Plurality is Stablest Conjecture for $3$ candidate elections, for all correlation parameters $ρ$ satisfying $0<ρ<ρ_{0}$, where $ρ_{0}>0$ is a fixed constant (that does not depend on the dimension $n$), when each candidate has an equal chance of winning. (ii) A variational proof of Borell's Inequality (corresponding to the case $m=2$). The structure theorem answers a question of De-Mossel-Neeman and of Ghazi-Kamath-Raghavendra. Item (i) is the first proof of any case of the Plurality is Stablest Conjecture of Khot-Kindler-Mossel-O'Donnell (2005) for fixed $ρ$, with the case $ρ\to1^{-}$ being solved recently. Item (i) is also the first evidence for the optimality of the Frieze-Jerrum semidefinite program for solving MAX-3-CUT, assuming the Unique Games Conjecture. Without the assumption that each candidate has an equal chance of winning in (i), the Plurality is Stablest Conjecture is known to be false.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源