论文标题
深度转移学习辅助信号检测环境反向散射通信
Deep Transfer Learning-Assisted Signal Detection for Ambient Backscatter Communications
论文作者
论文摘要
由于估计通道状态信息(CSI)的困难,现有的TAG信号检测算法不可避免地会遭受较高的位错误率(BER)。为了消除通道估计的需求并改善系统性能,在本文中,我们采用了深入的转移学习(DTL)方法来隐式提取通信渠道的特征并直接恢复标签符号。受到卷积神经网络(CNN)在以矩阵形式探索数据功能的强大能力的启发下,我们设计了一种新型的协方差矩阵矩阵知识神经网络(CMNET)基于基于基于的检测方案,以促进DTL,以促进DTL以促进TAG信号检测,从而有助于离线学习,转移学习和在线检测。具体而言,基于CMNET的可能性比测试(CMNET-LRT)是根据最小误差概率(MEP)标准得出的。利用DTL仅通过少数培训数据传输知识的出色表现,提出的方案可以适应不同的频道环境的检测器,以进一步改善检测性能。最后,广泛的仿真结果表明,所提出的方法的BER性能与完美CSI的最佳检测方法相当。
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system performance, in this paper, we adopt a deep transfer learning (DTL) approach to implicitly extract the features of communication channel and directly recover tag symbols. Inspired by the powerful capability of convolutional neural networks (CNN) in exploring the features of data in a matrix form, we design a novel covariance matrix aware neural network (CMNet)-based detection scheme to facilitate DTL for tag signal detection, which consists of offline learning, transfer learning, and online detection. Specifically, a CMNet-based likelihood ratio test (CMNet-LRT) is derived based on the minimum error probability (MEP) criterion. Taking advantage of the outstanding performance of DTL in transferring knowledge with only a few training data, the proposed scheme can adaptively fine-tune the detector for different channel environments to further improve the detection performance. Finally, extensive simulation results demonstrate that the BER performance of the proposed method is comparable to that of the optimal detection method with perfect CSI.