论文标题
分子光谱中非核对效应的类似量子模拟
Analog quantum simulation of non-Condon effects in molecular spectroscopy
论文作者
论文摘要
在这项工作中,我们提出了用于分子振动光谱的模拟量子模拟的线性光学实现,并结合了具有四四个小截断误差的非核对散射操作。到目前为止,仅在Condon状态中才提出了用于实现量子加速的模拟和数字量子算法,该算法是指独立于核坐标的过渡偶极矩。对于模拟量子光学模拟,超出了condon状态(即非宪法跃迁),必须在线性光学网络中适当处理所得的非单身散射操作。在本文中,我们将过渡偶极矩操作员的一阶和二阶Herzberg-Teller扩展用于非核对效应,以实现线性光学量子硬件。我们认为,该方法为模拟和数字量子模拟中的近似任意非单身操作打开了一种新方法。我们报告了萘,菲和苯的振动光谱中的硅内模拟,以支持我们的发现。
In this work, we present a linear optical implementation for analog quantum simulation of molecular vibronic spectra, incorporating the non-Condon scattering operation with a quadratically small truncation error. Thus far, analog and digital quantum algorithms for achieving quantum speedup have been suggested only in the Condon regime, which refers to a transition dipole moment that is independent of nuclear coordinates. For analog quantum optical simulation beyond the Condon regime (i.e., non-Condon transitions) the resulting non-unitary scattering operations must be handled appropriately in a linear optical network. In this paper, we consider the first and second-order Herzberg-Teller expansions of the transition dipole moment operator for the non-Condon effect, for implementation on linear optical quantum hardware. We believe the method opens a new way to approximate arbitrary non-unitary operations in analog and digital quantum simulations. We report in-silico simulations of the vibronic spectra for naphthalene, phenanthrene, and benzene to support our findings.