论文标题

使用多模式放射学和组织学数据的神经胶质瘤分类

Glioma Classification Using Multimodal Radiology and Histology Data

论文作者

Hamidinekoo, Azam, Pieciak, Tomasz, Afzali, Maryam, Akanyeti, Otar, Yuan, Yinyin

论文摘要

神经胶质瘤是高死亡率的脑肿瘤。该肿瘤有各种等级和亚型,治疗程序相应差异。临床医生和肿瘤学家根据视觉检查放射学和组织学数据对这些肿瘤进行诊断和分类。但是,此过程可能是耗时且主观的。计算机辅助方法可以帮助临床医生做出更好,更快的决定。在本文中,我们使用放射学和组织病理学图像提出了一条将神经胶质瘤自动分类为三种亚类型的管道:少突胶质瘤,星形胶质细胞瘤和胶质母细胞瘤。所提出的方法实现了放射学和组织学模态的不同分类模型,并通过合奏方法将它们结合在一起。该算法最初通过深度学习方法进行瓷砖级(用于组织学)和切片级别(用于放射学)分类,然后将瓷砖/切片级别的潜在特征合并为全势和全范围的亚型亚型预测。使用CPM-RadPath 2020挑战中提供的数据集评估了分类算法。提议的管道达到了0.886的F1得分,Cohen的Kappa得分为0.811,平衡精度为0.860。所提出的模型对各种特征的端到端学习的能力使其能够对神经胶质瘤肿瘤亚型的可比预测。

Gliomas are brain tumours with a high mortality rate. There are various grades and sub-types of this tumour, and the treatment procedure varies accordingly. Clinicians and oncologists diagnose and categorise these tumours based on visual inspection of radiology and histology data. However, this process can be time-consuming and subjective. The computer-assisted methods can help clinicians to make better and faster decisions. In this paper, we propose a pipeline for automatic classification of gliomas into three sub-types: oligodendroglioma, astrocytoma, and glioblastoma, using both radiology and histopathology images. The proposed approach implements distinct classification models for radiographic and histologic modalities and combines them through an ensemble method. The classification algorithm initially carries out tile-level (for histology) and slice-level (for radiology) classification via a deep learning method, then tile/slice-level latent features are combined for a whole-slide and whole-volume sub-type prediction. The classification algorithm was evaluated using the data set provided in the CPM-RadPath 2020 challenge. The proposed pipeline achieved the F1-Score of 0.886, Cohen's Kappa score of 0.811 and Balance accuracy of 0.860. The ability of the proposed model for end-to-end learning of diverse features enables it to give a comparable prediction of glioma tumour sub-types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源