论文标题
对应于无限图的有限亚图的平衡度量的收敛性:新示例
Convergence of equilibrium measures corresponding to finite subgraphs of infinite graphs: new examples
论文作者
论文摘要
人们考虑了热力学形式主义的一个问题,即可数符号马尔可夫链。它涉及对对应于增加无限非负矩阵$ a $的有限亚介质序列的平衡度量的渐近行为,当这些序列收敛到$ a $。在审查了到目前为止获得的结果后,为新矩阵类提供了问题的解决方案,该类别与以前在某些基本特征中所研究的矩阵不同。使用已加载图的几何语言而不是矩阵语言。
A problem from thermodynamic formalism for countable symbolic Markov chains is considered. It concerns asymptotic behavior of the equilibrium measures corresponding to increasing sequences of finite sub-matrices of an infinite nonnegative matrix $A$ when these sequences converge to $A$. After reviewing the results obtained up to now, a solution of the problem is given for a new matrix class, which differs from those studied previously in some essential feature. A geometric language of loaded graphs instead of the matrix language is used.