论文标题
猫(0)立方体复合物的折叠状技术
Folding-like techniques for CAT(0) cube complexes
论文作者
论文摘要
在开创性的纸中,摊位引入了图形的形态折叠。折叠的结果之一是表示有限级自由组的有限生成的亚组作为有限图的沉浸。 Stallings的方法允许人们以算法的形式构建此表示形式,从而为有关自由组亚组的经典问题提供有效的,算法的答案和证明。最近,丹尼(Dani-Levcovitz)使用类似失速的方法来研究右角coxeter基团的亚组,这些方法在CAT(0)立方体复合物上几何作用。在本文中,我们将其技术扩展到非侧面弯曲的立方体复合物的基本组。
In a seminal paper, Stallings introduced folding of morphisms of graphs. One consequence of folding is the representation of finitely-generated subgroups of a finite-rank free group as immersions of finite graphs. Stallings's methods allow one to construct this representation algorithmically, giving effective, algorithmic answers and proofs to classical questions about subgroups of free groups. Recently Dani--Levcovitz used Stallings-like methods to study subgroups of right-angled Coxeter groups, which act geometrically on CAT(0) cube complexes. In this paper we extend their techniques to fundamental groups of non-positively curved cube complexes.