论文标题
以低资源语言检测社交媒体操纵
Detecting Social Media Manipulation in Low-Resource Languages
论文作者
论文摘要
社交媒体被故意用于恶意目的,包括政治操纵和虚假信息。大多数研究侧重于高资源语言。但是,恶意演员在包括低资源的国家和语言之间共享内容。在这里,我们调查了在低资源语言设置中是否可以在何种程度上检测到恶意行为者。我们发现,在2016年美国总统大选后,Twitter镇压干扰行动的一部分,大量的帐户被暂停。通过将文本嵌入和转移学习结合在一起,我们的框架可以检测到有希望的准确性,恶意用户在他加禄语中发布,而没有任何先前的知识或对这种语言恶意内容的培训。我们首先独立学习每种语言的嵌入模型,即高资源语言(英语)和低资源的语言(塔加尔)。然后,我们学习两个潜在空间之间的映射以传输检测模型。我们证明,所提出的方法极大地超过了最先进的模型,包括伯特(Bert),在具有非常有限的培训数据的设置中具有明显的优势 - 在处理在线平台中检测恶意活动时的规范。
Social media have been deliberately used for malicious purposes, including political manipulation and disinformation. Most research focuses on high-resource languages. However, malicious actors share content across countries and languages, including low-resource ones. Here, we investigate whether and to what extent malicious actors can be detected in low-resource language settings. We discovered that a high number of accounts posting in Tagalog were suspended as part of Twitter's crackdown on interference operations after the 2016 US Presidential election. By combining text embedding and transfer learning, our framework can detect, with promising accuracy, malicious users posting in Tagalog without any prior knowledge or training on malicious content in that language. We first learn an embedding model for each language, namely a high-resource language (English) and a low-resource one (Tagalog), independently. Then, we learn a mapping between the two latent spaces to transfer the detection model. We demonstrate that the proposed approach significantly outperforms state-of-the-art models, including BERT, and yields marked advantages in settings with very limited training data -- the norm when dealing with detecting malicious activity in online platforms.