论文标题
有限的$ e_ \ mathfrak {f} $的延续 - 组理论
The continuation of finite $E_\mathfrak{F}$-groups theory
论文作者
论文摘要
我们描述了使用$ \ Mathfrak {F} $的有限组的结构 - 当$ \ Mathfrak {f} $是一个亚组关闭的饱和超自由基地层时,亚正常或自称为主要环状亚组。我们证明,当$ \ mathfrak {f} $是一个亚组闭合的饱和形成时,具有绝对$ \ mathfrak {f} $的组的组可溶于亚正常或自称。
We describe the structure of finite groups with $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups when $\mathfrak{F}$ is a subgroup-closed saturate superradical formation containing all nilpotent groups. We prove that groups with absolutely $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups are soluble when $\mathfrak{F}$ is a subgroup-closed saturate formation containing all nilpotent groups.