论文标题
基于边界的自动差异信息增益量度衡量未知3D环境的机器人探索
Frontier-based Automatic-differentiable Information Gain Measure for Robotic Exploration of Unknown 3D Environments
论文作者
论文摘要
机器人代理商对未知区域的自主探索的路径规划问题通常采用基于边境或信息理论启发式方法。基于边界的启发式方法通常通过可见的边界体素数量来评估观点的信息获得,这是一个离散的度量,只能通过采样来优化。另一方面,信息理论启发式计算信息的增益是地图与传感器测量之间的相互信息。尽管可以计算此类措施的梯度,但计算涉及昂贵的数值差异。在这项工作中,我们在观点周围的可见边界体素数计数中添加了一个新颖的模糊逻辑过滤器,这使信息的梯度相对于观点的梯度可以使用自动分化有效地计算。这使我们能够通过其他可区分质量度量(例如路径长度)同时优化信息增益。使用多个仿真环境,我们证明了提出的基于梯度的优化方法一致地改善了勘探路径的信息增益和其他质量度量。
The path planning problem for autonomous exploration of an unknown region by a robotic agent typically employs frontier-based or information-theoretic heuristics. Frontier-based heuristics typically evaluate the information gain of a viewpoint by the number of visible frontier voxels, which is a discrete measure that can only be optimized by sampling. On the other hand, information-theoretic heuristics compute information gain as the mutual information between the map and the sensor's measurement. Although the gradient of such measures can be computed, the computation involves costly numerical differentiation. In this work, we add a novel fuzzy logic filter in the counting of visible frontier voxels surrounding a viewpoint, which allows the gradient of the information gain with respect to the viewpoint to be efficiently computed using automatic differentiation. This enables us to simultaneously optimize information gain with other differentiable quality measures such as path length. Using multiple simulation environments, we demonstrate that the proposed gradient-based optimization method consistently improves the information gain and other quality measures of exploration paths.