论文标题
在球体上的某些有界可测量功能的不变空间
Certain Invariant Spaces of Bounded Measurable Functions on a Sphere
论文作者
论文摘要
Nagel和Rudin在他们的1976年论文中以封闭的单位为特征,而Möbius不变空间在球体上的连续和$ l^p $ functions,价格为$ 1 \ leq p <\ infty $。在本文中,我们为弱*单位的单位提供了一个类似的表征,而在球体上的$ l^\ ind iftty $ functions的莫比乌斯不变空间。我们还对弱*的单位进行了调查,并且在球体上的$ l^\ infty $ functions的Möbius不变代数。
In their 1976 paper, Nagel and Rudin characterize the closed unitarily and Möbius invariant spaces of continuous and $L^p$-functions on a sphere, for $1\leq p<\infty$. In this paper we provide an analogous characterization for the weak*-closed unitarily and Möbius invariant spaces of $L^\infty$-functions on a sphere. We also investigate the weak*-closed unitarily and Möbius invariant algebras of $L^\infty$-functions on a sphere.