论文标题

用作为潜在变量解释的可解释的自然语言理解

Towards Interpretable Natural Language Understanding with Explanations as Latent Variables

论文作者

Zhou, Wangchunshu, Hu, Jinyi, Zhang, Hanlin, Liang, Xiaodan, Sun, Maosong, Xiong, Chenyan, Tang, Jian

论文摘要

最近生成自然语言解释不仅在提供可解释的解释方面表现出非常有希望的结果,而且还提供了其他信息和预测的监督。但是,现有的方法通常需要大量的人类注释的解释来进行培训,同时收集大量解释不仅耗时,而且很昂贵。在本文中,我们为可解释的自然语言理解开发了一个通用框架,该框架仅需要一小部分人注释的培训解释。我们的框架将自然语言解释视为对神经模型的基本推理过程进行建模的潜在变量。我们开发了一个变性EM框架来优化,其中解释生成模块和解释增强的预测模块被替代地优化并相互增强。此外,我们进一步提出了一种基于解释的自我训练方法,用于半监督学习。它在分配伪标签以未标记的数据和生成新的解释之间进行交替,以相互改进。关于两个自然语言理解任务的实验表明,我们的框架不仅可以在受监督和半监督的环境中做出有效的预测,而且可以产生良好的自然语言解释。

Recently generating natural language explanations has shown very promising results in not only offering interpretable explanations but also providing additional information and supervision for prediction. However, existing approaches usually require a large set of human annotated explanations for training while collecting a large set of explanations is not only time consuming but also expensive. In this paper, we develop a general framework for interpretable natural language understanding that requires only a small set of human annotated explanations for training. Our framework treats natural language explanations as latent variables that model the underlying reasoning process of a neural model. We develop a variational EM framework for optimization where an explanation generation module and an explanation-augmented prediction module are alternatively optimized and mutually enhance each other. Moreover, we further propose an explanation-based self-training method under this framework for semi-supervised learning. It alternates between assigning pseudo-labels to unlabeled data and generating new explanations to iteratively improve each other. Experiments on two natural language understanding tasks demonstrate that our framework can not only make effective predictions in both supervised and semi-supervised settings, but also generate good natural language explanation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源