论文标题

关于具有复杂电势的Schrödinger运营商的压缩分解

On Compressed Resolvents of Schrödinger Operators with Complex Potentials

论文作者

Behrndt, Jussi

论文摘要

在krein-naimark型公式中表达了$ -M MATHBB r^n $在子域$ω\ subset \ subset \ mathbb r^n $上的分解的压缩,以$ω$,dirichlet to dirichlet to dirichlet to dirichlet to n dirichlet the dirichlets $ niblesy $ y MAPS和某些问题的$ yrys $ ry的$ ry y y Mathbb r^n $表达正在使用r^n \ setMinus \OverlineΩ$。在一个更抽象的操作者理论框架中,这个主题紧密相连,并受到了Henk de Snoo及其合着者为自动化案例开发的所谓耦合方法的启发。

The compression of the resolvent of a non-self-adjoint Schrödinger operator $-Δ+V$ onto a subdomain $Ω\subset\mathbb R^n$ is expressed in a Krein-Naimark type formula, where the Dirichlet realization on $Ω$, the Dirichlet-to-Neumann maps, and certain solution operators of closely related boundary value problems on $Ω$ and $\mathbb R^n\setminus\overlineΩ$ are being used. In a more abstract operator theory framework this topic is closely connected and very much inspired by the so-called coupling method that has been developed for the self-adjoint case by Henk de Snoo and his coauthors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源