论文标题
通过深层结构和纹理合成的概念压缩
Conceptual Compression via Deep Structure and Texture Synthesis
论文作者
论文摘要
现有的压缩方法通常集中于去除信号级冗余,而将视觉数据分解为紧凑的概念组件的潜在和多功能性仍然缺乏进一步的研究。为此,我们提出了一个新颖的概念压缩框架,将视觉数据编码为紧凑的结构和纹理表示,然后以深厚的合成方式解码,旨在实现更好的视觉重建质量,灵活的内容操纵以及对各种视觉任务的潜在支持。特别是,我们建议通过由两个互补视觉特征组成的双层模型来压缩图像:1)结构图表示的结构层和2)纹理层,其特征在于低维的深度表示。在编码器侧,结构图和纹理表示是单独提取和压缩的,生成紧凑,可解释的,可互操作的bitstreams。在解码阶段,提出了分层融合gan(HF-GAN)学习合成范式,其中将纹理呈现到解码的结构图中,从而带来了具有显着的视觉现实主义的高质量重建。关于不同图像的广泛实验已经证明了我们的框架具有较低的比特率,更高的重建质量以及对视觉分析和内容操纵任务的多功能性的优势。
Existing compression methods typically focus on the removal of signal-level redundancies, while the potential and versatility of decomposing visual data into compact conceptual components still lack further study. To this end, we propose a novel conceptual compression framework that encodes visual data into compact structure and texture representations, then decodes in a deep synthesis fashion, aiming to achieve better visual reconstruction quality, flexible content manipulation, and potential support for various vision tasks. In particular, we propose to compress images by a dual-layered model consisting of two complementary visual features: 1) structure layer represented by structural maps and 2) texture layer characterized by low-dimensional deep representations. At the encoder side, the structural maps and texture representations are individually extracted and compressed, generating the compact, interpretable, inter-operable bitstreams. During the decoding stage, a hierarchical fusion GAN (HF-GAN) is proposed to learn the synthesis paradigm where the textures are rendered into the decoded structural maps, leading to high-quality reconstruction with remarkable visual realism. Extensive experiments on diverse images have demonstrated the superiority of our framework with lower bitrates, higher reconstruction quality, and increased versatility towards visual analysis and content manipulation tasks.