论文标题

通过阶段修剪的有效模型压缩

Effective Model Compression via Stage-wise Pruning

论文作者

Zhang, Mingyang, Yu, Xinyi, Rong, Jingtao, Ou, Linlin

论文摘要

自动化机器学习(自动ML)修剪方法旨在自动搜索修剪策略,以降低深卷积神经网络(深CNN)的计算复杂性。但是,一些先前的工作发现,许多自动ML修剪方法的结果甚至无法超过均匀修剪方法的结果。在本文中,显示了由超级网的不熟悉和不公平的训练引起的自动修剪的无效性。深层超网受到了未满训练的训练,因为它包含了太多的候选人。为了克服UNFULL训练,提出了一种阶段修剪(SWP)方法,该方法将深层的超网拆分为几个阶段的超级网,以减少候选数字,并利用Indlace蒸馏来监督舞台训练。此外,由于每个通道的采样概率不平等,因此宽的超级网被不公平训练击中。因此,在每个训练迭代中对FullNet和TinyNet进行采样,以确保每个通道都可以过度训练。值得注意的是,接受SWP训练的子网的代理性能比以前的大多数自动ML修剪工作更接近实际性能。实验表明,在移动设置下,SWP可以在CIFAR-10和Imagenet上实现最新的功能。

Automated Machine Learning(Auto-ML) pruning methods aim at searching a pruning strategy automatically to reduce the computational complexity of deep Convolutional Neural Networks(deep CNNs). However, some previous work found that the results of many Auto-ML pruning methods cannot even surpass the results of the uniformly pruning method. In this paper, the ineffectiveness of Auto-ML pruning which is caused by unfull and unfair training of the supernet is shown. A deep supernet suffers from unfull training because it contains too many candidates. To overcome the unfull training, a stage-wise pruning(SWP) method is proposed, which splits a deep supernet into several stage-wise supernets to reduce the candidate number and utilize inplace distillation to supervise the stage training. Besides, A wide supernet is hit by unfair training since the sampling probability of each channel is unequal. Therefore, the fullnet and the tinynet are sampled in each training iteration to ensure each channel can be overtrained. Remarkably, the proxy performance of the subnets trained with SWP is closer to the actual performance than that of most of the previous Auto-ML pruning work. Experiments show that SWP achieves the state-of-the-art on both CIFAR-10 and ImageNet under the mobile setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源