论文标题

Roial:感兴趣的地区积极学习以表征外骨骼步态偏好景观

ROIAL: Region of Interest Active Learning for Characterizing Exoskeleton Gait Preference Landscapes

论文作者

Li, Kejun, Tucker, Maegan, Bıyık, Erdem, Novoseller, Ellen, Burdick, Joel W., Sui, Yanan, Sadigh, Dorsa, Yue, Yisong, Ames, Aaron D.

论文摘要

表征哪种类型的外骨骼步态对用户感到舒适,并且更普遍地了解走路的科学需要恢复用户的实用景观。学习这些风景是具有挑战性的,因为步行轨迹是由许多步态参数定义的,人类试验的数据收集很昂贵,并且必须确保用户安全和舒适性。这项工作提出了感兴趣的积极学习区域(ROIAL)框架,该框架积极学习每个用户的基本实用程序功能,以确保安全性和舒适性。 Roial从序数和偏好反馈中学习,它们比绝对数值得分更可靠的反馈机制。该算法的性能在模拟和实验性地评估了三个不可降低的受试者在低体外外骨骼内行走。 Roial学习了贝叶斯后期的贝叶斯后期,这些后骨骼在四个外骨骼步态参数中预测了每个外骨骼用户的实用性景观。该算法发现了用户步态偏好之间的共同点和差异,并确定了最影响用户反馈的步态参数。这些结果表明,从有限的人类试验中恢复步态效用景观的可行性。

Characterizing what types of exoskeleton gaits are comfortable for users, and understanding the science of walking more generally, require recovering a user's utility landscape. Learning these landscapes is challenging, as walking trajectories are defined by numerous gait parameters, data collection from human trials is expensive, and user safety and comfort must be ensured. This work proposes the Region of Interest Active Learning (ROIAL) framework, which actively learns each user's underlying utility function over a region of interest that ensures safety and comfort. ROIAL learns from ordinal and preference feedback, which are more reliable feedback mechanisms than absolute numerical scores. The algorithm's performance is evaluated both in simulation and experimentally for three non-disabled subjects walking inside of a lower-body exoskeleton. ROIAL learns Bayesian posteriors that predict each exoskeleton user's utility landscape across four exoskeleton gait parameters. The algorithm discovers both commonalities and discrepancies across users' gait preferences and identifies the gait parameters that most influenced user feedback. These results demonstrate the feasibility of recovering gait utility landscapes from limited human trials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源