论文标题
带有或不带准粒子的古典多体混乱
Classical many-body chaos with and without quasiparticles
论文作者
论文摘要
我们研究海森堡磁铁中的相关性,运输和混乱,作为经典模型多体系统。通过变化的温度和维度,我们可以在具有和不对称破坏和伴随的集体模式或准粒子的设置之间调节。我们分析了常规和超时的固定自旋相关器(`decontrelators'),以跟踪时空局部局部扰动的扩散 - 蝴蝶的翅膀 - 以及传输系数和Lyapunov指数。我们确定许多定性不同的制度。琐碎的是,在$ t = 0 $时,根本没有动态。在低温的限制下,$ t = 0^+$,可集成性出现,无限长寿命棒。在这里,由扰动产生的波袋在弹道上传播,在自旋波速度下产生一个灯具,从而累积了蝴蝶速度。在灯具内部,在短时间内可见自由旋转波谱的图案特征。最重要的是,旋转波寿命的残留相互作用范围虽然在此限制下发散,但在任何非零$ t $中仍然有限。在最长的时间,这导致了“标准”混乱制度;对于此制度,我们表明Lyapunov指数与反旋转波寿命成正比。显而易见的是,在此和“短期”可综合状态之间,出现了一个疤痕的政权:在这里,去摩擦剂是时空高度不均匀的,由稀有和随机的散射事件播种次级灯杆。随着自旋相关长度随着$ t $的增加而降低,这些机制之间的区别消失了,在高温下,先前研究的混沌顺磁性状态出现。为此,我们阐明了如何在某种程度上违反直觉,弹道蝴蝶速度是由扩散的自旋动力学产生的。
We study correlations, transport and chaos in a Heisenberg magnet as a classical model many-body system. By varying temperature and dimensionality, we can tune between settings with and without symmetry breaking and accompanying collective modes or quasiparticles. We analyse both conventional and out-of-time-ordered spin correlators (`decorrelators') to track the spreading of a spatiotemporally localised perturbation -- the wingbeat of the butterfly -- as well as transport coefficients and Lyapunov exponents. We identify a number of qualitatively different regimes. Trivially, at $T=0$, there is no dynamics at all. In the limit of low temperature, $T=0^+$, integrability emerges, with infinitely long-lived magnons; here the wavepacket created by the perturbation propagates ballistically, yielding a lightcone at the spin wave velocity which thus subsumes the butterfly velocity; inside the lightcone, a pattern characteristic of the free spin wave spectrum is visible at short times. On top of this, residual interactionslead to spin wave lifetimes which, while divergent in this limit, remain finite at any nonzero $T$. At the longest times, this leads to a `standard' chaotic regime; for this regime, we show that the Lyapunov exponent is simply proportional to the inverse spin-wave lifetime. Visibly strikingly, between this and the `short-time' integrable regimes, a scarred regime emerges: here, the decorrelator is spatiotemporally highly non-uniform, being dominated by rare and random scattering events seeding secondary lightcones. As the spin correlation length decreases with increasing $T$, the distinction between these regimes disappears and at high temperature the previously studied chaotic paramagnetic regime emerges. For this, we elucidate how, somewhat counterintuitively, the ballistic butterfly velocity arises from a diffusive spin dynamics.