论文标题
通过纳米孔易位的聚合物易位,并在活性杆的环境中辅助
Polymer translocation through nanopore assisted by an environment of active rods
论文作者
论文摘要
我们使用计算机模拟和ISO-Flux张力传播(IFTP)理论的组合来研究柔性线性聚合物的易位动力学通过纳米孔进入由2D中排斥活性杆组成的环境。我们证明,杆活性会引起聚合物的拥挤作用,从而导致时间依赖性的净力,从而促进易位进入活动环境。将此力纳入孔驱动的易位的IFTP理论中,使我们能够详细表征易位动态,并在平均易位时间中得出缩放形式,为$ \tildeτ\ sim \ sim \ tilde {l} _ {\ textrm {\ textrm $ \ tilde {l} _ {\ textrm {r}} $和$ \ tilde {f} _ {\ textrm {sp}} $分别是杆的长度和自propellopellopellopellopellopellopelloperforce of on cods,而$ν$是flory flory enfornement。
We use a combination of computer simulations and iso-flux tension propagation (IFTP) theory to investigate translocation dynamics of a flexible linear polymer through a nanopore into an environment composed of repulsive active rods in 2D. We demonstrate that the rod activity induces a crowding effect on the polymer, leading to a time-dependent net force that facilitates translocation into the active environment. Incorporating this force into the IFTP theory for pore-driven translocation allows us to characterise translocation dynamics in detail and derive a scaling form for the average translocation time as $\tildeτ \sim \tilde{L}_{\textrm{r}}^ν / \tilde{F}_{\textrm{SP}} $, where $\tilde{L}_{\textrm{r}}$ and $\tilde{F}_{\textrm{SP}}$ are the rod length and self-propelling force acting on the rods, respectively, and $ν$ is the Flory exponent.