论文标题

粒子到部分微分方程

Particles to Partial Differential Equations Parsimoniously

论文作者

Arbabi, Hassan, Kevrekidis, Ioannis

论文摘要

管理理化过程的方程通常在微观空间尺度上是已知的,但有人怀疑存在方程,例如以部分微分方程(PDE)的形式,可以解释系统的进化,以更粗糙,中镜或宏观长度尺度。发现那些粗粒的有效PDE可以导致在预测或控制等计算密集型任务中节省大量。我们提出了一个将人工神经网络与多尺度计算相结合的框架,以无方程数字的形式,以直接从微观模拟中直接从微观模拟中发现此类宏尺度PDE。收集足够的微观数据用于训练神经网络可能会在计算上是过时的。无方程式数字仅通过在时空域的稀疏子集中运行,可以更加简单地收集培训数据。我们还建议使用数据驱动的方法,基于多种学习和分布的最佳最佳运输,以识别适合于数据驱动的PDES发现的宏观尺度因变量。这种方法可以证实具有物理动机的候选变量,或者引入新的数据驱动变量,就可以制定粗粒的有效PDE。我们通过从基于粒子的模拟中提取粗粒的演化方程来说明我们的方法,并具有先验未知的宏观尺度变量,同时显着降低了必要的数据收集计算工作。

Equations governing physico-chemical processes are usually known at microscopic spatial scales, yet one suspects that there exist equations, e.g. in the form of Partial Differential Equations (PDEs), that can explain the system evolution at much coarser, meso- or macroscopic length scales. Discovering those coarse-grained effective PDEs can lead to considerable savings in computation-intensive tasks like prediction or control. We propose a framework combining artificial neural networks with multiscale computation, in the form of equation-free numerics, for efficient discovery of such macro-scale PDEs directly from microscopic simulations. Gathering sufficient microscopic data for training neural networks can be computationally prohibitive; equation-free numerics enable a more parsimonious collection of training data by only operating in a sparse subset of the space-time domain. We also propose using a data-driven approach, based on manifold learning and unnormalized optimal transport of distributions, to identify macro-scale dependent variable(s) suitable for the data-driven discovery of said PDEs. This approach can corroborate physically motivated candidate variables, or introduce new data-driven variables, in terms of which the coarse-grained effective PDE can be formulated. We illustrate our approach by extracting coarse-grained evolution equations from particle-based simulations with a priori unknown macro-scale variable(s), while significantly reducing the requisite data collection computational effort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源