论文标题

通过多模型马尔可夫决策过程建模和优化资源分配决策,并具有容量限制

Modeling and Optimizing Resource Allocation Decisions through Multi-model Markov Decision Processes with Capacity Constraints

论文作者

Demiray, Onur, Güneş, Evrim Didem, Örmeci, Lerzan

论文摘要

本文提出了一种针对动态资源分配问题的新公式,该公式将具有已知参数的传统MDP模型转换为具有不确定参数和资源容量约束的新模型。我们的激励示例来自医疗资源分配问题:可以提供多种慢性疾病的患者正常或特殊护理,而在金融或人力资源由于经济或人力资源而受到特殊护理能力的限制。在这样的系统中,很难(即使不是不可能)为每个患者的健康发展产生良好的估计。我们将问题提出为两阶段的随机整数程序。但是,在我们提出和测试平行近似动态编程算法的问题的更大实例中,它很容易棘手。我们表明,商业求解器无法使用大量场景来解决问题实例。然而,即使对于非常大的问题实例,该算法即使在几秒钟内也提供了解决方案。在我们的计算实验中,它找到了实例的$ 42.86 \%$的最佳解决方案。总体上,它实现了$ 0.073 \%$平均间隙值。最后,我们估计了对参数不同实现的贡献的价值。我们的发现表明,我们的模型有大量额外的效用。

This paper proposes a new formulation for the dynamic resource allocation problem, which converts the traditional MDP model with known parameters and no capacity constraints to a new model with uncertain parameters and a resource capacity constraint. Our motivating example comes from a medical resource allocation problem: patients with multiple chronic diseases can be provided either normal or special care, where the capacity of special care is limited due to financial or human resources. In such systems, it is difficult, if not impossible, to generate good estimates for the evolution of health for each patient. We formulate the problem as a two-stage stochastic integer program. However, it becomes easily intractable in larger instances of the problem for which we propose and test a parallel approximate dynamic programming algorithm. We show that commercial solvers are not capable of solving the problem instances with a large number of scenarios. Nevertheless, the proposed algorithm provides a solution in seconds even for very large problem instances. In our computational experiments, it finds the optimal solution for $42.86\%$ of the instances. On aggregate, it achieves $0.073\%$ mean gap value. Finally, we estimate the value of our contribution for different realizations of the parameters. Our findings show that there is a significant amount of additional utility contributed by our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源