论文标题
Jacobi合奏,Hurwitz Numbers和Wilson多项式
Jacobi Ensemble, Hurwitz Numbers and Wilson Polynomials
论文作者
论文摘要
我们表达了雅各比单一合奏的拓扑扩展,该合奏在三重单调的赫维茨数字方面。这完成了对经典统一不变矩阵合奏的拓扑扩展的组合解释。我们还提供了有效的公式,以生成雅各比单位合奏的多点相关器的功能,从威尔逊多项式角度来看,概括了一个点相关器与威尔逊多项式之间的已知关系。
We express the topological expansion of the Jacobi Unitary Ensemble in terms of triple monotone Hurwitz numbers. This completes the combinatorial interpretation of the topological expansion of the classical unitary invariant matrix ensembles. We also provide effective formulae for generating functions of multipoint correlators of the Jacobi Unitary Ensemble in terms of Wilson polynomials, generalizing the known relations between one point correlators and Wilson polynomials.