论文标题

MLA:归因序列的公制学习

MLAS: Metric Learning on Attributed Sequences

论文作者

Zhuang, Zhongfang, Kong, Xiangnan, Rundensteiner, Elke, Zouaoui, Jihane, Arora, Aditya

论文摘要

近年来,距离指标学习引起了很多关注,其目标是根据用户反馈学习距离度量。公制学习的常规方法主要集中于学习数据属性的Mahalanobis距离度量。关于度量学习的最新研究已扩展到顺序数据,在该数据中,我们只有序列中的结构信息,但没有可用的属性。但是,现实世界的应用程序通常涉及归因的序列数据(例如ClickStreams),其中每个实例不仅包含一组属性(例如,用户会话上下文),还包括一系列类别项目(例如,用户操作)。在本文中,我们研究了归因序列上的度量学习问题。与以前的公制学习工作不同,我们现在需要超越属性特征空间中的Mahalanobis距离度量,同时还将结构信息纳入序列。我们提出了一个深度学习框架,称为MLA(归因序列上的度量学习),以学习有效测量属性序列之间差异的距离度量。现实世界数据集的经验结果表明,与归因序列上的最新方法相比,提出的MLA框架可显着提高度量学习的性能。

Distance metric learning has attracted much attention in recent years, where the goal is to learn a distance metric based on user feedback. Conventional approaches to metric learning mainly focus on learning the Mahalanobis distance metric on data attributes. Recent research on metric learning has been extended to sequential data, where we only have structural information in the sequences, but no attribute is available. However, real-world applications often involve attributed sequence data (e.g., clickstreams), where each instance consists of not only a set of attributes (e.g., user session context) but also a sequence of categorical items (e.g., user actions). In this paper, we study the problem of metric learning on attributed sequences. Unlike previous work on metric learning, we now need to go beyond the Mahalanobis distance metric in the attribute feature space while also incorporating the structural information in sequences. We propose a deep learning framework, called MLAS (Metric Learning on Attributed Sequences), to learn a distance metric that effectively measures dissimilarities between attributed sequences. Empirical results on real-world datasets demonstrate that the proposed MLAS framework significantly improves the performance of metric learning compared to state-of-the-art methods on attributed sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源