论文标题

基于学习的3D占用预测在封闭环境中自动导航

Learning-based 3D Occupancy Prediction for Autonomous Navigation in Occluded Environments

论文作者

Wang, Lizi, Ye, Hongkai, Wang, Qianhao, Gao, Yuman, Xu, Chao, Gao, Fei

论文摘要

在移动机器人的自动导航中,传感器在混乱的环境中遭受大量闭塞,在计划过程中留下了大量的空间。在实践中,以乐观或悲观的方式处理未知的空间都设定了对计划绩效的限制,因此无法同时满足侵略性和安全性。但是,人类只能从部分观察结果中推断出障碍的确切形状,并产生非保守轨迹,以避免在闭塞空间中可能发生碰撞。模仿人类行为,在本文中,我们提出了一种基于深神网络的方法,以可靠地预测未知空间的占用分布。具体而言,所提出的方法利用环境的上下文信息,并从先验知识中学习以预测遮挡空间中的障碍物分布。我们使用未标记和无地面真实数据来训练我们的网络,并成功地将其应用于在看不见的环境中无需任何细化的情况下的实时导航。结果表明,我们的方法通过提高安全性,而无需降低聚类环境的速度来利用运动动力学计划者的性能。

In autonomous navigation of mobile robots, sensors suffer from massive occlusion in cluttered environments, leaving significant amount of space unknown during planning. In practice, treating the unknown space in optimistic or pessimistic ways both set limitations on planning performance, thus aggressiveness and safety cannot be satisfied at the same time. However, humans can infer the exact shape of the obstacles from only partial observation and generate non-conservative trajectories that avoid possible collisions in occluded space. Mimicking human behavior, in this paper, we propose a method based on deep neural network to predict occupancy distribution of unknown space reliably. Specifically, the proposed method utilizes contextual information of environments and learns from prior knowledge to predict obstacle distributions in occluded space. We use unlabeled and no-ground-truth data to train our network and successfully apply it to real-time navigation in unseen environments without any refinement. Results show that our method leverages the performance of a kinodynamic planner by improving security with no reduction of speed in clustered environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源