论文标题

从线性到卢瑟福制度的过渡的强制磁重新连接的准线性理论

Quasi-linear theory of forced magnetic reconnection for the transition from linear to Rutherford regime

论文作者

Huang, Wenlong, Zhu, Ping

论文摘要

使用Viscid两场降低的MHD模型,开发了一种新的分析理论,以统一HAHM-KULSRUD-TAYLOR(HKT)线性溶液和Rutherford Quasi Quasi-linear egimime。采用准线性方法,我们获得了平板几何形状中静态等离子体中等离子体响应的封闭方程系统。获得了用于强制磁重新连接的分析解的积分形式,从HKT线性解决方案到卢瑟福Quasi Quasi-linear溶液均匀有效。特别地,可以通过单个系数$ k_s \ propto s^{8/5}ψ_C^2 $来描述准线性效果,其中$ s = \ frac {τ_r} {τ_r} {τ_a} $和$ c $是外部磁性磁光度的lunquist数字和宽度。当索引$ k_s \ rightarrow 0 $时,可以恢复用于响应的HKT线性解决方案。另一方面,当$ k_s \ sim1 $时,准线性效应在岛上的增长中起关键作用。我们的新分析解决方案也已与MHD模拟减少的一致性进行了比较。

Using the in-viscid two-field reduced MHD model, a new analytical theory is developed to unify the Hahm-Kulsrud-Taylor (HKT) linear solution and the Rutherford quasi-linear regime. Adopting a quasi-linear approach, we obtain a closed system of equations for plasma response in a static plasma in slab geometry. An integral form of analytical solution is obtained for the forced magnetic reconnection, uniformly valid throughout the entire regimes from the HKT linear solution to the Rutherford quasi-linear solution. In particular, the quasi-linear effect can be described by a single coefficient $K_s\propto S^{8/5} ψ_c^2$, where $S=\frac{τ_R}{τ_A}$ and $ψ_c$ are the Lunquist number and amplitude of external magnetic perturbation, respectively. The HKT linear solution for response can be recovered when the index $K_s\rightarrow 0$. On the other hand, the quasi-linear effect plays a key role in the island growth when $K_s\sim1$. Our new analytical solution has also been compared with reduced MHD simulations with agreement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源