论文标题

FDNA:改善数据隐私和模型多样性

FDNAS: Improving Data Privacy and Model Diversity in AutoML

论文作者

Zhang, Chunhui, Liang, Yongyuan, Yuan, Xiaoming, Cheng, Lei

论文摘要

为了防止在实现自动化机器智能的同时,私人信息泄漏,有一个新兴的趋势来整合联合学习和神经建筑搜索(NAS)。尽管看起来很有希望,但两个宗旨的困难耦合使算法开发变得非常具有挑战性。特别是,如何直接从客户的大量非IID数据中以联合方式有效地搜索最佳神经体系结构仍然是很难破解的坚果。为了解决这一挑战,在本文中,通过利用无代理NAS的进步,我们提出了一个联合的直接神经体系结构搜索(FDNAS)框架,该框架允许客户的分散非IID数据的硬件感知NAS。为了进一步适应受元学习启发的各种客户的数据分布,提出了一个联合的直接神经体系结构搜索(CFDNAS)框架的集群,以实现客户意识的NAS,从某种意义上说,每个客户都可以学习针对其特定数据分布的量身定制的深度学习模型。对现实世界非IID数据集的广泛实验显示了针对客户的各种硬件和数据分布的最先进的精度效率折衷。我们的代码将在纸质接受后公开发布。

To prevent the leakage of private information while enabling automated machine intelligence, there is an emerging trend to integrate federated learning and Neural Architecture Search (NAS). Although promising as it may seem, the coupling of difficulties from both two tenets makes the algorithm development quite challenging. In particular, how to efficiently search the optimal neural architecture directly from massive non-iid data of clients in a federated manner remains to be a hard nut to crack. To tackle this challenge, in this paper, by leveraging the advances in proxy-less NAS, we propose a Federated Direct Neural Architecture Search (FDNAS) framework that allows hardware-aware NAS from decentralized non-iid data of clients. To further adapt for various data distributions of clients, inspired by meta-learning, a cluster Federated Direct Neural Architecture Search (CFDNAS) framework is proposed to achieve client-aware NAS, in the sense that each client can learn a tailored deep learning model for its particular data distribution. Extensive experiments on real-world non-iid datasets show state-of-the-art accuracy-efficiency trade-offs for various hardware and data distributions of clients. Our codes will be released publicly upon paper acceptance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源