论文标题

两个不是绝对galois群体的亲P组的家族

Two families of pro-p groups that are not absolute Galois groups

论文作者

Quadrelli, Claudio

论文摘要

令$ p $为素数。我们生产了两个新家庭,包括$ P $组,这些家族是绝对的galois群体。为了证明这一点,我们使用了绝对Galois Pro-P $组的1平滑度属性。此外,我们在这些家庭中表明,一个人具有单股份的p $组组,这些群体可能不排除为绝对的加洛伊斯群体,该团体采用了Galois的共同学(Rost-Voevodsky Theorem)或Galois Coohomology中Massey Products的消失。

Let $p$ be a prime. We produce two new families of pro-$p$ groups which are not realizable as absolute Galois groups of fields. To prove this we use the 1-smoothness property of absolute Galois pro-$p$ groups. Moreover, we show in these families one has one-relator pro-$p$ groups which may not be ruled out as absolute Galois groups employing the quadraticity of Galois cohomology (a consequence of Rost-Voevodsky Theorem), or the vanishing of Massey products in Galois cohomology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源