论文标题

通过非参数闭环行为学习,数据驱动的预测控制对多代理运动计划

Data-Driven Predictive Control Towards Multi-Agent Motion Planning With Non-Parametric Closed-Loop Behavior Learning

论文作者

Ma, Jun, Cheng, Zilong, Wang, Wenxin, Mamun, Abdullah Al, de Silva, Clarence W., Lee, Tong Heng

论文摘要

在许多特定情况下,准确有效的系统识别是模型预测控制(MPC)公式中通常遇到的挑战。结果,当缺乏这种准确性时,在这种情况下采用传统的MPC算法时,结果可能会大大削弱结果。本文研究了一种用于多代理运动计划的非参数闭环行为学习方法,该方法为数据驱动的预测控制框架提供了支持。利用未知系统的闭环输入/输出测量的创新方法,基于收集的数据集学习了系统的行为,因此可以使用构造的非参数预测模型来确定最佳控制动作。这个非参数预测控制框架减轻了通常在需要开循环输入/输出测量数据收集和参数系统标识的替代方法中通常遇到的重型计算负担。所提出的数据驱动方法也证明可以保留良好的鲁棒性能。最后,使用多动物系统来证明这种有希望的发展的高效结果。

In many specific scenarios, accurate and effective system identification is a commonly encountered challenge in the model predictive control (MPC) formulation. As a consequence, the overall system performance could be significantly weakened in outcome when the traditional MPC algorithm is adopted under those circumstances when such accuracy is lacking. This paper investigates a non-parametric closed-loop behavior learning method for multi-agent motion planning, which underpins a data-driven predictive control framework. Utilizing an innovative methodology with closed-loop input/output measurements of the unknown system, the behavior of the system is learned based on the collected dataset, and thus the constructed non-parametric predictive model can be used to determine the optimal control actions. This non-parametric predictive control framework alleviates the heavy computational burden commonly encountered in the optimization procedures typically in alternate methodologies requiring open-loop input/output measurement data collection and parametric system identification. The proposed data-driven approach is also shown to preserve good robustness properties. Finally, a multi-UAV system is used to demonstrate the highly effective outcome of this promising development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源