论文标题
具有异质标签和模型的资源受限的联合学习
Resource-Constrained Federated Learning with Heterogeneous Labels and Models
论文作者
论文摘要
各种物联网应用程序要求对不同应用的资源受限的机器学习机制,例如普遍的医疗保健,活动监控,语音识别,实时计算机视觉等。这需要我们利用来自多个设备的信息,这些设备很少。事实证明,联合学习是分布式和协作机器学习的极为可行的选择。尤其是,联合学习的设备是一个积极的研究领域,但是,解决统计(非IID数据)和模型异质性方面存在各种挑战。此外,在本文中,我们探讨了一个新的兴趣挑战 - 处理联合学习中的标签异质性。为此,我们提出了一个框架,其中具有简单的$α$加权联合会的分数聚合,该框架利用了跨标签的重叠信息增益,同时节省了此过程中的带宽成本。对动物10数据集的经验评估(有4个标签以有效阐明结果)表明,平均确定性准确性提高至少约16.7%。我们还通过在Raspberry Pi 2(一个单板计算平台上的不同迭代)进行联合学习和推断,通过尝试联合学习和推断,证明了我们提出的框架的设备功能。
Various IoT applications demand resource-constrained machine learning mechanisms for different applications such as pervasive healthcare, activity monitoring, speech recognition, real-time computer vision, etc. This necessitates us to leverage information from multiple devices with few communication overheads. Federated Learning proves to be an extremely viable option for distributed and collaborative machine learning. Particularly, on-device federated learning is an active area of research, however, there are a variety of challenges in addressing statistical (non-IID data) and model heterogeneities. In addition, in this paper we explore a new challenge of interest -- to handle label heterogeneities in federated learning. To this end, we propose a framework with simple $α$-weighted federated aggregation of scores which leverages overlapping information gain across labels, while saving bandwidth costs in the process. Empirical evaluation on Animals-10 dataset (with 4 labels for effective elucidation of results) indicates an average deterministic accuracy increase of at least ~16.7%. We also demonstrate the on-device capabilities of our proposed framework by experimenting with federated learning and inference across different iterations on a Raspberry Pi 2, a single-board computing platform.