论文标题

分数Sobolev同构的限制较弱,几乎是注入性的:

Weak Limits of Fractional Sobolev Homeomorphisms are Almost Injective: A Note

论文作者

Schikorra, Armin, Scott, James M.

论文摘要

令$ω\ subset \ mathbb {r}^n $为打开集,而$ f_k \ in w^{s,p}(ω; \ \ m mathbb {r}^n)$是同构的顺序,是一系列同型薄弱的序列,在w^^{s,p}(s,p}; p}; \ mathbb^n $ f \ in w^^{s,p}中;众所周知,如果$ s = 1 $和$ p> n-1 $,那么$ f $几乎在域和目标中几乎无处不在。在本说明中,我们将这些结果扩展到(0,1)$和$ sp> n-1 $的情况。这特别适用于$ c^s $-Hölder地图。

Let $Ω\subset \mathbb{R}^n$ be an open set and $f_k \in W^{s,p}(Ω;\mathbb{R}^n)$ be a sequence of homeomorphisms weakly converging to $f \in W^{s,p}(Ω;\mathbb{R}^n)$. It is known that if $s=1$ and $p > n-1$ then $f$ is injective almost everywhere in the domain and the target. In this note we extend such results to the case $s\in(0,1)$ and $sp > n-1$. This in particular applies to $C^s$-Hölder maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源