论文标题

使用五个卡来编码$ \ mathbb {z}/6 \ mathbb {z} $中的每个整数

Using Five Cards to Encode Each Integer in $\mathbb{Z}/6\mathbb{Z}$

论文作者

Ruangwises, Suthee

论文摘要

使用一张扑克牌的甲板(通常称为基于卡的加密纸张学)对安全的多方计算进行研究,可以追溯到1989年,当时Den Boer引入了“五卡技巧”来计算逻辑和功能。从那时起,已经开发了许多计算不同功能的协议。在本文中,我们提出了一种新的编码方案,该方案使用五个卡来编码$ \ mathbb {z}/6 \ mathbb {z} $中的每个整数。使用此编码方案,我们开发了可以用13张卡复制承诺的协议,添加两个带有10张卡的整数,然后用14张卡片将两个整数乘以两个整数。就所需的卡数量而言,我们所有的协议都是当前最著名的协议。我们的编码方案可以概括为在$ \ mathbb {z}/n \ mathbb {z} $中编码整数,以$ n $的其他值。

Research in secure multi-party computation using a deck of playing cards, often called card-based cryptography, dates back to 1989 when Den Boer introduced the "five-card trick" to compute the logical AND function. Since then, many protocols to compute different functions have been developed. In this paper, we propose a new encoding scheme that uses five cards to encode each integer in $\mathbb{Z}/6\mathbb{Z}$. Using this encoding scheme, we develop protocols that can copy a commitment with 13 cards, add two integers with 10 cards, and multiply two integers with 14 cards. All of our protocols are the currently best known protocols in terms of the required number of cards. Our encoding scheme can be generalized to encode integers in $\mathbb{Z}/n\mathbb{Z}$ for other values of $n$ as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源