论文标题

$ {\ Mathbb {p}^1 \ Times \ Mathbb {p}^1} $中最简单的最小免费分辨率

The simplest minimal free resolutions in ${\mathbb{P}^1 \times \mathbb{P}^1}$

论文作者

Botbol, Nicolás, Dickenstein, Alicia, Schenck, Hal

论文摘要

我们研究了一个理想的最小的自由分辨率,其中三个具有同一双层发电机包含的三个发电机,其中包含在Bihomenosient的最大理想$ \ langle s,t \ rangle \ cap \ cap \ langle u,v \ langle u,v \ rangle u,v \ rangle $的bigraded randed环k [s,t; t; u,v]。我们的分析涉及来自代数几何形状(Segre-veronese品种),经典交换代数(Buchsbaum-Eisenbud精确性标准,Hilbert-Burch Theorem)和同源代数(Koszul同源性,光谱序列)的工具。我们详细治疗了二次的情况(1,n)。我们将作品与弗罗伯格·洛德奎斯特(Fröberg-Lundqvist)的猜想联系起来,这是希尔伯特(Hilbert)功能的,并带有许多开放问题。

We study the minimal bigraded free resolution of an ideal with three generators of the same bidegree, contained in the bihomogeneous maximal ideal $ \langle s,t\rangle \cap \langle u,v \rangle$ of the bigraded ring K[s,t;u,v]. Our analysis involves tools from algebraic geometry (Segre-Veronese varieties), classical commutative algebra (Buchsbaum-Eisenbud criteria for exactness, Hilbert-Burch theorem), and homological algebra (Koszul homology, spectral sequences). We treat in detail the case in which the bidegree is (1,n). We connect our work to a conjecture of Fröberg-Lundqvist on bigraded Hilbert functions, and close with a number of open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源