论文标题
层次介质中的准周期2D-螺旋散射的快速求解器
Fast Solver for Quasi-Periodic 2D-Helmholtz Scattering in Layered Media
论文作者
论文摘要
我们提出了一种快速的光谱盖素方案,用于离散边界积分方程,该方程是由多层周期性结构或光栅中的二维Helmholtz传播问题引起的。我们采用适当的参数化傅立叶基础并排除了雷利木异常,我们严格地建立了连续和离散问题的良好性,并证明了拟议方案的超代数错误收敛速率。通过几个数值示例,我们确认了我们的发现并显示出与通过NyStröm方法获得的表演竞争力。
We present a fast spectral Galerkin scheme for the discretization of boundary integral equations arising from two-dimensional Helmholtz transmission problems in multi-layered periodic structures or gratings. Employing suitably parametrized Fourier basis and excluding Rayleigh-Wood anomalies, we rigorously establish the well-posedness of both continuous and discrete problems, and prove super-algebraic error convergence rates for the proposed scheme. Through several numerical examples, we confirm our findings and show performances competitive to those attained via Nyström methods.