论文标题

高现实的图像用超图表覆盖

Hyperrealistic Image Inpainting with Hypergraphs

论文作者

Wadhwa, Gourav, Dhall, Abhinav, Murala, Subrahmanyam, Tariq, Usman

论文摘要

由于填充丢失的数据的多种可能性,图像介绍是计算机视觉中的一项非平凡任务,这可能取决于图像的全局信息。大多数现有方法都使用注意机制来学习图像的全球环境。由于无法捕获全球环境,这种注意机制在语义上产生了合理但模糊的结果。在本文中,我们介绍了有关空间特征的HyperGraph卷积,以了解数据之间的复杂关系。我们引入了一种可训练的机制,可以使用Hyperedges进行超图卷积连接节点。据我们所知,HyperGraph卷积从未用于计算机视觉中的任何图像到图像任务的空间特征。此外,我们在歧视者中介绍了封闭式卷积,以在预测的图像中执行局部一致性。在Places2,Celeba-HQ,Paris Street View和Facades数据集上进行的实验表明,我们的方法可实现最新的结果。

Image inpainting is a non-trivial task in computer vision due to multiple possibilities for filling the missing data, which may be dependent on the global information of the image. Most of the existing approaches use the attention mechanism to learn the global context of the image. This attention mechanism produces semantically plausible but blurry results because of incapability to capture the global context. In this paper, we introduce hypergraph convolution on spatial features to learn the complex relationship among the data. We introduce a trainable mechanism to connect nodes using hyperedges for hypergraph convolution. To the best of our knowledge, hypergraph convolution have never been used on spatial features for any image-to-image tasks in computer vision. Further, we introduce gated convolution in the discriminator to enforce local consistency in the predicted image. The experiments on Places2, CelebA-HQ, Paris Street View, and Facades datasets, show that our approach achieves state-of-the-art results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源