论文标题

量子极限循环以及雷利和范德尔振荡器

Quantum limit-cycles and the Rayleigh and van der Pol oscillators

论文作者

Arosh, Lior Ben, Cross, M. C., Lifshitz, Ron

论文摘要

在经典动力学中描述为极限周期的自我振荡系统正在成为驱动耗散非平衡开放量子系统的规范模型,并且是量子技术的关键要素。我们考虑了一个模型系列,该模型在雷利的经典教科书示例和范德波尔振荡器之间进行了插值,并遵循它们从经典域向量子域的过渡,同时适当地制定了相应的量子描述。我们为这些模型中最简单的稳态量子动力学得出了一个精确的分析解决方案,适用于任何骨系统 - 无论是机械,光学还是其他 - 通过单个玻色子和双玻色子发射和吸收与其环境耦合。我们的解决方案是对现有溶液的任意温度的概括,通常将非常低(零)的温度误导到量子范围振荡器中。我们仔细探索了分叉向该振荡器的自我振荡的量子过渡的经典,同时注意到动力学和识别独特量子的特征的变化。

Self-oscillating systems, described in classical dynamics as limit cycles, are emerging as canonical models for driven dissipative nonequilibrium open quantum systems, and as key elements in quantum technology. We consider a family of models that interpolates between the classical textbook examples of the Rayleigh and the van der Pol oscillators, and follow their transition from the classical to the quantum domain, while properly formulating their corresponding quantum descriptions. We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models, applicable to any bosonic system---whether mechanical, optical, or otherwise---that is coupled to its environment via single-boson and double-boson emission and absorption. Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature, often misattributed to the quantum van der Pol oscillator. We closely explore the classical to quantum transition of the bifurcation to self-oscillations of this oscillator, while noting changes in the dynamics and identifying features that are uniquely quantum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源