论文标题
汉克尔操作员紧凑的足够条件
A Sufficient condition for compactness of Hankel operators
论文作者
论文摘要
令$ω$为$ \ mathbb {c}^{n} $中的一个有限的凸域。我们表明,如果c^{1}中的$φ\(\OverlineΩ)$是$bΩ$中的分析品种,则$ h^{q}_φ$,带有符号$φ$的Hankel Operator,是紧凑的。我们已经显示了较早的匡威,因此我们从符号相对于边界中的分析结构的行为来获得这些操作员的紧凑性的表征。推论的是,具有这些符号的Toeplitz运算符是Fredholm(索引零)。
Let $Ω$ be a bounded convex domain in $\mathbb{C}^{n}$. We show that if $φ\in C^{1}(\overlineΩ)$ is holomorphic along analytic varieties in $bΩ$, then $H^{q}_φ$, the Hankel operator with symbol $φ$, is compact. We have shown the converse earlier, so that we obtain a characterization of compactness of these operators in terms of the behavior of the symbol relative to analytic structure in the boundary. A corollary is that Toeplitz operators with these symbols are Fredholm (of index zero).