论文标题
通过双重插值来调整过渡金属二甲基化金属中的dzyaloshinskii-moriya相互作用
Tailoring Dzyaloshinskii-Moriya interaction in a transition metal dichalcogenide by dual-intercalation
论文作者
论文摘要
Dzyaloshinskii-Moriya相互作用(DMI)对于形成各种手性自旋纹理,新颖的镁行为至关重要,并允许其潜在的应用在节能旋转器设备中。在这里,我们通过互化的Fe原子在过渡金属二甲基化金属(TMD)2H-TAS2中实现了相当大的散装DMI,该原子形成具有断裂的空间反转对称性的手性超级电池,并且还起到了磁有序的来源。使用新开发的质子栅极技术,栅极控制的质子插入可以进一步改变载体密度,并通过Ruderman-Kittel-Kasuya-Yosida机构更改载体密度,并强烈调整DMI。最终的巨型拓扑厅电阻率在-5.2V(约为零偏置值的460%)的1.4 UOHM.CM比大多数已知的磁性材料大。理论分析表明,如此大的拓扑结构效应源自DMI稳定的二维Bloch型手性自旋纹理,而大型的异常霍尔效应来自自旋轨道相互作用的Dirac Nodal线。 2HTAS2中的双重间隔提供了一个模型系统,以揭示大型TMD家族中DMI的性质和DMI的栅极调整方式,这进一步实现了手学自旋纹理和相关电磁现象的电气控制。
Dzyaloshinskii-Moriya interaction (DMI) is vital to form various chiral spin textures, novel behaviors of magnons and permits their potential applications in energy-efficient spintronic devices. Here, we realize a sizable bulk DMI in a transition metal dichalcogenide (TMD) 2H-TaS2 by intercalating Fe atoms, which form the chiral supercells with broken spatial inversion symmetry and also act as the source of magnetic orderings. Using a newly developed protonic gate technology, gate-controlled protons intercalation could further change the carrier density and intensely tune DMI via the Ruderman-Kittel-Kasuya-Yosida mechanism. The resultant giant topological Hall resistivity of 1.4 uohm.cm at -5.2V (about 460% of the zero-bias value) is larger than most of the known magnetic materials. Theoretical analysis indicates that such a large topological Hall effect originates from the two-dimensional Bloch-type chiral spin textures stabilized by DMI, while the large anomalous Hall effect comes from the gapped Dirac nodal lines by spin-orbit interaction. Dual-intercalation in 2HTaS2 provides a model system to reveal the nature of DMI in the large family of TMDs and a promising way of gate tuning of DMI, which further enables an electrical control of the chiral spin textures and related electromagnetic phenomena.