论文标题
使用张量网络状态算法验证使用任意几何形状验证随机量子电路
Verifying Random Quantum Circuits with Arbitrary Geometry Using Tensor Network States Algorithm
论文作者
论文摘要
使用经典计算机有效模拟随机量子电路的能力对于开发嘈杂的中间尺度量子设备越来越重要。在这里,我们提出了一种基于张量的网络状态算法,该算法是专门设计用于计算具有任意几何形状随机量子电路的振幅的。基于奇异值分解的压缩以及两侧电路演化算法用于进一步压缩所得的张量网络。为了进一步加速模拟,我们还提出了一种启发式算法来计算最佳张量收缩路径。我们证明,我们的算法比Sch $ \ ddot {\ text {o}} $ dinger-dinger-feynman算法更快的算法要快$ 2 $,用于验证$ 53 $ QUBIT SYCAMORE Processor上的随机量子电路,电路depthers decther decther tepths decters decters defly-feynman算法。我们还模拟了最高$ 104 $ QUBITS的较大随机量子电路,这表明该算法是验证近期量子计算机上相对较浅的量子电路的理想工具。
The ability to efficiently simulate random quantum circuits using a classical computer is increasingly important for developing Noisy Intermediate-Scale Quantum devices. Here we present a tensor network states based algorithm specifically designed to compute amplitudes for random quantum circuits with arbitrary geometry. Singular value decomposition based compression together with a two-sided circuit evolution algorithm are used to further compress the resulting tensor network. To further accelerate the simulation, we also propose a heuristic algorithm to compute the optimal tensor contraction path. We demonstrate that our algorithm is up to $2$ orders of magnitudes faster than the Sch$\ddot{\text{o}}$dinger-Feynman algorithm for verifying random quantum circuits on the $53$-qubit Sycamore processor, with circuit depths below $12$. We also simulate larger random quantum circuits up to $104$ qubits, showing that this algorithm is an ideal tool to verify relatively shallow quantum circuits on near-term quantum computers.