论文标题

通用多源域的适应

Universal Multi-Source Domain Adaptation

论文作者

Yin, Yueming, Yang, Zhen, Hu, Haifeng, Wu, Xiaofu

论文摘要

无监督的域适应性使智能模型可以将知识从标记的源域转移到类似但未标记的目标域。最近的研究表明,知识可以从一个源域转移到另一个未知目标域,称为通用域适应(UDA)。但是,在现实世界应用中,通常有多个源域被利用用于域的适应性。在本文中,我们正式提出了一个更通用的域自适应设置,通用多源域适应(UMDA),其中多个源域的标签集可能不同,并且目标域的标签集完全未知。 UMDA中的主要挑战是确定每个源域和目标域之间的共同标签,并随着源域的数量增加而保持模型可扩展。为了应对这些挑战,我们提出了一个通用的多源适应网络(UMAN)来解决域适应问题,而无需在各种UMDA设置中增加模型的复杂性。在UMAN中,我们通过预测余量估算了共同标签中每个已知类别的可靠性,这有助于对抗训练,以更好地对齐普通标签集中多个源域和目标域的分布。此外,还提供了UMAN的理论保证。大量的实验结果表明,现有的UDA和多源DA(MDA)方法不能直接应用于UMDA,并且所提出的UMAN在各种UMDA设置中实现了最先进的性能。

Unsupervised domain adaptation enables intelligent models to transfer knowledge from a labeled source domain to a similar but unlabeled target domain. Recent study reveals that knowledge can be transferred from one source domain to another unknown target domain, called Universal Domain Adaptation (UDA). However, in the real-world application, there are often more than one source domain to be exploited for domain adaptation. In this paper, we formally propose a more general domain adaptation setting, universal multi-source domain adaptation (UMDA), where the label sets of multiple source domains can be different and the label set of target domain is completely unknown. The main challenges in UMDA are to identify the common label set between each source domain and target domain, and to keep the model scalable as the number of source domains increases. To address these challenges, we propose a universal multi-source adaptation network (UMAN) to solve the domain adaptation problem without increasing the complexity of the model in various UMDA settings. In UMAN, we estimate the reliability of each known class in the common label set via the prediction margin, which helps adversarial training to better align the distributions of multiple source domains and target domain in the common label set. Moreover, the theoretical guarantee for UMAN is also provided. Massive experimental results show that existing UDA and multi-source DA (MDA) methods cannot be directly applied to UMDA and the proposed UMAN achieves the state-of-the-art performance in various UMDA settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源