论文标题

花花公子:与复合体3D表面的高保真表示的深度未签名距离嵌入

DUDE: Deep Unsigned Distance Embeddings for Hi-Fidelity Representation of Complex 3D Surfaces

论文作者

Venkatesh, Rahul, Sharma, Sarthak, Ghosh, Aurobrata, Jeni, Laszlo, Singh, Maneesh

论文摘要

具有任意拓扑的形状的高保真表示是各种视觉和图形应用的重要问题。由于其有限的分辨率,使用点云,体素和网格的经典离散形状表示,在这些应用中使用时会产生较低的质量结果。已经提出了几种使用深层神经网络的隐性3D形状表示方法,从而导致表示质量以及对下游应用的影响都有显着改善。但是,这些方法只能用于表示拓扑封闭的形状,这极大地限制了它们可以代表的形状类别。结果,他们通常还需要干净的水密网眼才能进行训练。在这项工作中,我们提出了花花公子 - 一种深度未签名的距离嵌入方法,可以减轻这两种缺点。杜德(Dude)是一种不符合的形状表示形式,它利用无符号距离场(UDF)表示与表面的接近度,而正常矢量场(NVF)表示表面方向。我们表明,这两个(UDF+NVF)的组合可用于学习任意开放/封闭形状的高保真表示。与先前的工作(例如DeepSDF)相反,我们的形状表示可以直接从嘈杂的三角形汤中学到,并且不需要水密网格。此外,我们提出了新的算法,用于从学习的表示中提取和渲染ISO曲面。我们在基准3D数据集上验证了花花公子,并证明它对最新技术产生了重大改进。

High fidelity representation of shapes with arbitrary topology is an important problem for a variety of vision and graphics applications. Owing to their limited resolution, classical discrete shape representations using point clouds, voxels and meshes produce low quality results when used in these applications. Several implicit 3D shape representation approaches using deep neural networks have been proposed leading to significant improvements in both quality of representations as well as the impact on downstream applications. However, these methods can only be used to represent topologically closed shapes which greatly limits the class of shapes that they can represent. As a consequence, they also often require clean, watertight meshes for training. In this work, we propose DUDE - a Deep Unsigned Distance Embedding method which alleviates both of these shortcomings. DUDE is a disentangled shape representation that utilizes an unsigned distance field (uDF) to represent proximity to a surface, and a normal vector field (nVF) to represent surface orientation. We show that a combination of these two (uDF+nVF) can be used to learn high fidelity representations for arbitrary open/closed shapes. As opposed to prior work such as DeepSDF, our shape representations can be directly learnt from noisy triangle soups, and do not need watertight meshes. Additionally, we propose novel algorithms for extracting and rendering iso-surfaces from the learnt representations. We validate DUDE on benchmark 3D datasets and demonstrate that it produces significant improvements over the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源