论文标题
使用语法定向变异自动编码器设计的极端条件的聚合物
Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders
论文作者
论文摘要
由于材料候选者的近乎可能性以及多个必需的属性/绩效目标,新材料的设计/发现是高度不平凡的。因此,现在通常使用机器学习工具来通过学习从材料到专业空间的理论映射(称为\ emph {forward}问题)来实现所需属性。但是,这种方法效率低下,并且受到人类想象力可以想象的候选人的严重限制。因此,在有关聚合物的这项工作中,我们通过解决\ emph {倒}问题来应对材料发现挑战:直接生成满足所需的财产/绩效目标的候选人。我们利用语法导向的变异自动编码器(VAE)与高斯工艺回归(GPR)模型串联,发现在三个极端条件下预计预期可靠的聚合物:(1)高温,(2)高电场和(3)高温\ emph \ emph \ emph \ emph(和}高电场,可用于关键的结构和能量能量的电气,电子,电气,电子,电子,电子,电气,电子电气,电力,电力,电气,电气,电气化。从(和增强)人类创造力学习的方法是一般的,可以扩展以发现具有其他靶向性能和性能指标的聚合物。
The design/discovery of new materials is highly non-trivial owing to the near-infinite possibilities of material candidates, and multiple required property/performance objectives. Thus, machine learning tools are now commonly employed to virtually screen material candidates with desired properties by learning a theoretical mapping from material-to-property space, referred to as the \emph{forward} problem. However, this approach is inefficient, and severely constrained by the candidates that human imagination can conceive. Thus, in this work on polymers, we tackle the materials discovery challenge by solving the \emph{inverse} problem: directly generating candidates that satisfy desired property/performance objectives. We utilize syntax-directed variational autoencoders (VAE) in tandem with Gaussian process regression (GPR) models to discover polymers expected to be robust under three extreme conditions: (1) high temperatures, (2) high electric field, and (3) high temperature \emph{and} high electric field, useful for critical structural, electrical and energy storage applications. This approach to learn from (and augment) human ingenuity is general, and can be extended to discover polymers with other targeted properties and performance measures.