论文标题
激活的随机步行者从单个来源传播了多远?
How far do Activated Random Walkers spread from a single source?
论文作者
论文摘要
与许多粒子系统不同,即使在一个空间维度中,激活的随机行走也具有非平凡行为。我们证明了n个激活的随机步行器从Z中的单个源的扩散的内在和外边界。内部结合涉及与活化的随机步行器在有限间隔内的固定分布的比较,而外界则与稳定在Z上的无限Bernoulli构型的稳定相比。
Unlike many particle systems, Activated Random Walk has nontrivial behavior even in one spatial dimension. We prove inner and outer bounds on the spread of n activated random walkers from a single source in Z. The inner bound involves a comparison with the stationary distribution of activated random walkers on a finite interval, while the outer bound involves a comparison with the stabilization of an infinite Bernoulli configuration of activated random walkers on Z.