论文标题
在动态拥挤空间中扩散的扩散研究
Scaling study of diffusion in dynamic crowded spaces
论文作者
论文摘要
我们为长时间的高度移动障碍物1、2和3和3的空间中的长时间扩散运动制定了缩放理论。我们的示踪剂在数十年的时间内无异常地扩散,然后达到有效扩散的稳定稳定状态,有效地扩散$ d_ \ d_ \ nathrm d_ \ nathrm {eff} $,依赖于差异的差异。 $ d_ \ mathrm {eff} $的缩放在临界体制上方和之下,其特征是两个独立的关键参数:电导率指数$μ$,也可以在具有冷冻障碍物的模型和一个指数$ψ$的模型中发现,这量量化了障碍物扩散的效果。
We formulate a scaling theory for the long-time diffusive motion in a space occluded by a high density of moving obstacles in dimensions 1, 2 and 3. Our tracers diffuse anomalously over many decades in time, before reaching a diffusive steady state with an effective diffusion constant $D_\mathrm{eff}$, which depends on the obstacle diffusivity and density. The scaling of $D_\mathrm{eff}$, above and below a critical regime, is characterized by two independent critical parameters: the conductivity exponent $μ$, also found in models with frozen obstacles, and an exponent $ψ$, which quantifies the effect of obstacle diffusivity.