论文标题
IDE网络:交互式驾驶事件和从人类数据中提取模式
IDE-Net: Interactive Driving Event and Pattern Extraction from Human Data
论文作者
论文摘要
在各种驾驶场景中,自动驾驶汽车(AV)需要与多个异质道路使用者共享道路。仔细与所有观察到的药物仔细互动是压倒性和不必要的,并且AVS需要确定是否以及何时与每个周围剂相互作用。为了促进AVS的预测和计划模块的设计和测试,可以通过适当的表示,对交互行为的深入了解,行为数据中的事件需要自动提取并自动分类。除了回答是否以及何时何时回答,对这些动机的互动基本模式的答案对于这些动机也至关重要。因此,学会从人类数据中提取交互式驾驶事件和模式,以应对是否对AV的任务至关重要。但是,没有明确的互动行为定义和分类法,并且大多数现有作品都是基于手动标记或手工制作的规则和功能的。在本文中,我们提出了交互式驾驶事件和模式提取网络(IDE-net),这是一个深度学习框架,可自动从车辆轨迹中自动提取交互事件和模式。在IDE-NET中,我们利用多任务学习的力量,并提出了三个辅助任务,以无监督的方式帮助模式提取。我们还设计一个独特的时空块来编码轨迹数据。相互作用数据集的实验结果验证了此类设计的有效性,以更好的概括性和有效的模式提取。我们找到了三种可解释的互动模式,为驾驶员行为表示,建模和理解带来了见解。我们对学习模式的分析中都采用了客观和主观评估指标。
Autonomous vehicles (AVs) need to share the road with multiple, heterogeneous road users in a variety of driving scenarios. It is overwhelming and unnecessary to carefully interact with all observed agents, and AVs need to determine whether and when to interact with each surrounding agent. In order to facilitate the design and testing of prediction and planning modules of AVs, in-depth understanding of interactive behavior is expected with proper representation, and events in behavior data need to be extracted and categorized automatically. Answers to what are the essential patterns of interactions are also crucial for these motivations in addition to answering whether and when. Thus, learning to extract interactive driving events and patterns from human data for tackling the whether-when-what tasks is of critical importance for AVs. There is, however, no clear definition and taxonomy of interactive behavior, and most of the existing works are based on either manual labelling or hand-crafted rules and features. In this paper, we propose the Interactive Driving event and pattern Extraction Network (IDE-Net), which is a deep learning framework to automatically extract interaction events and patterns directly from vehicle trajectories. In IDE-Net, we leverage the power of multi-task learning and proposed three auxiliary tasks to assist the pattern extraction in an unsupervised fashion. We also design a unique spatial-temporal block to encode the trajectory data. Experimental results on the INTERACTION dataset verified the effectiveness of such designs in terms of better generalizability and effective pattern extraction. We find three interpretable patterns of interactions, bringing insights for driver behavior representation, modeling and comprehension. Both objective and subjective evaluation metrics are adopted in our analysis of the learned patterns.